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§72) 3) For any z with sz <1,
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By differentiating the series term by term, we have
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§72) 5) For » # /2,
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where the last expression is also well-defined at z = 7/2 with value —.
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Similarly, for z # —m /2,
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where the last expression is also well-defined at z = —7/2 with value —.
™

Therefore, z = +7/2 are removable singularities and f(z) is an entire function.



§73) 1) For 0 < |z| < 1,
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§73) 4) Since e* — 1 = Z Z—, the division is given by
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§77) 1) b) For 0 < |2| < cos [ 1 i (=1 L1
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Hence the residue at z = 0 is —5
§77) 2) b) Note that for z # 1 e’ et e ! Z (2= 1) In articular, the
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coefficient of =1 of the series expansion is —e~'. Hence, by Residue Theorem, we have
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§77) 4) a) Let f(z) = 12,73 Then we have for 0 < |z| < 1,

—z

1 f 1 1 -1 Z 3n i 3n—4
— — [ — = z = — z
22 z 27 — 24 41— z3 o

/|Z|_2 f(2)dz = 2mi Res,—q [lef (i)} = —2mi

Remark: In the examination, to apply the theorem about residue at infinity, it is better to check

that all the singularities of the function f(z) lie inside the contour. Otherwise you may lose some

Therefore,

marks (depending on the difficulties of the exam).

§79) 1) a) Note that for z # 0,
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The principle part is given by Z
n=2
Therefore the singular point z = 0 is an essential singularity.
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c) Note that for z # 0,
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The principle part is 0.

Therefore the singular point z = 0 is a removable singularity.

c¢) Note that for z # 1,
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Therefore the singular point z = 1 is a pole of order 2 and the residue is 2e2.



